

Twinned Watersheds Project

Riparian Vegetation Assessment

Heather Pritchard, RPF Christoph Steeger, RPBio Elodie Roger, MSc

May 30, 2022

Key messages from the "Flows" piece...

1. The water table drops when there is...

- Lack of structure
 - Rocks, logs, root wads
- Lack of complexity
 - Side channels, off channels, side pools
- 77% of the Koksilah study area lacks structure and complexity
- 2. Slowing down the water in winter/spring allows aquifers to recharge
 - Requires **structure** and **complexity**

What do we mean by "riparian ecosystems"?

- Transition zones between aquatic and terrestrial upland ecosystems
 - Structures and ecological processes change along a gradient
 - Connect surface and subsurface water with adjacent upland areas
- Sources of stream structure and complexity

Riparian ecosystems are 3-dimensional

Riparian zones extend:

- Along the perimeter of the water
- Outward to the limits of flooding
- Upward into the canopy

Highly variable in width!

Important functions:

- Part of healthy fish habitat
- Ensure cleanest water possible
- Influence water quantity and timing of flow
- Reduce flooding impacts
- Provide important wildlife habitat

Chemainus River

Koksilah River

Riparian Vegetation Assessment

Objective 1:

To assess current riparian condition along important fish-bearing reaches

Objective 2:

To assess prevalence of culturally significant plants

Objective 3: To identify riparian restoration sites

Objective 4:

To conduct restoration activities at selected sites

Our Approach:

- Desktop
 - Mapping
 - Literature review
- Field work
- Restoration activities

Mapping

Various analyses:

- Land ownership
- Land use
- Disturbance

Mature Coniferous Forest

Three measurement zones

(mapping and field plots)

- 0-30 m
- 30-50 m
- 50-100 m

What does science say about riparian ecosystem widths?

Riparian Function	Range
Bank stabilization	9 – 30 m
Sediment control	9 – 100 m
Reduce flood risk	Entire floodplain
Filter Nitrogen and Phosphorus	5 – 70 m
Stream temperature	10 – 70 m

What does science say about riparian ecosystem widths?

Riparian Function	Range	
Bank stabilization	9 – 30 m	
Sediment control	9 – 100 m	
Reduce flood risk	Entire floodplain	
Filter Nitrogen and Phosphorus	5 – 70 m	
Stream temperature	10 – 70 m	
Litter inputs	3 – 100 m	
Invertebrates	30 – 100 m	
Large Wood Deposits	15-50 m	

Riparian Function	Range
Bank stabilization	9 – 30 m
Sediment control	9 – 100 m
Reduce flood risk	Entire floodplain
Filter Nitrogen and Phosphorus	5 – 70 m
Stream temperature	10 – 70 m
Litter inputs	3 – 100 m
Invertebrates	30 – 100 m
Large Wood Deposits	15-50 m
Mammals	5 – 500+ m
Birds	20 – 500 m
Amphibians and reptiles	120 – 290 m
Microclimate	45 – 100 m

In conclusion: Riparian ecosystem widths are highly variable!

What riparian protection is provided in legislation?

Land Designation	Legislation	Maximum No harvesting Zone	Maximum No road Building Zone
Crown Forest	Forest and Range Practices Act	50 m	70 m
Private Managed Forest	Private Managed Forest Land Act	Varies up to 30 m	30 m
Private Residential, Commercial, and Industrial	Riparian Areas Protection Act	30 m	30 m
Agricultural	Fisheries Act (federal)	Not established	Not established
Reserve Lands	Fisheries Act (federal)	Not established	Not established

Inventory plots – what did we measure?

- Trees
- Shrubs and herbs
- Dead and downed wood
- Wildlife observations and their habitat features
- Old stumps
- Disturbances (e.g., invasive plants)

- Historic riparian forests were old growth
- Current riparian ecosystems are mostly young 2nd growth forests and agricultural fields
- Riparian ecosystems are in "relatively good" shape
 - i.e., 75% of the 100 m areas has recovering vegetation

- There is usually at least 30 m of riparian buffer regardless of land use/ownership
- Agriculture has the narrowest riparian buffers
- In Koksilah, most rural properties have a 100 m forested buffer
- Riparian areas in parks are being loved to death

Koksilah Provincial Park

- The MNC forest has "functional" riparian buffers along the Chemainus River
- Crown and private land logging have smaller riparian buffers

- All plants are culturally significant!
- Cedar became our focus
 - There are very few old cedar
 - Few cedar are present in the new forests

- Riparian areas contain the highest wildlife species diversity of all ecosystems
- Riparian wildlife has been declining and at least 15 vertebrate species are now at risk
 - e.g., toads, frogs, cavity-nesting owls, elk

Primary keystone species of riparian areas:

• beaver, salmon, cottonwood

- Another keystone forest species is the Pileated Woodpecker
- No beaver and very little evidence of Pileated Woodpecker cavities found during fieldwork

• Increasing river complexity will benefit beavers and, in turn, salmon, other wildlife, aquifer recharge, flood control, etc.

Mukw' stem 'i' utunu tumuhw 'o' slhiilhukw'ul

The wildlife and fish communities, riparian habitat, condition of the rivers and aquifers, flood control, all are interconnected.

- Riparian areas are *recovering functionality* but are not *recovered*
- Legislation permits further loss of recovering riparian forest

How does the riparian project link up with the "Flows" piece?

• Structure:

 Recovering riparian forests will some day contribute the large logs and root wads

• Complexity:

• Riparian areas must be wide enough to let the river move

How does the riparian project link up with the "Flows" piece?

A whole of watershed approach is needed.

- We need to understand the <u>whole</u> watershed
 - Upper reaches of the mainstems
 - Major and minor tributaries
- Restoration efforts need to be a partnership of all landowners

Other recommendations:

- Conservation Property Tax Incentive
- Create consistency in riparian protection
 - For **structure**, 1 maximum tree height often recommended (i.e., 50 m)
 - For complexity, ...???
- Identify and protect existing healthy cedar ecosystems

Restoration Efforts

- Chemainus estuary Scotch broom removal
- Chemainus River / Halalt IR English ivy removal
- Koksilah River nearly 2000 new riparian plants and stakes
- Bright Angel Regional Park

Cedar Project

photo: Jacqueline Ronson/The Discourse

Thank-you Project Partners!

- Khowutzun Forestry Services
- Farmland Advantage
- Quw'utsun Cultural Connections
- Cowichan Estuary Nature Center
- CVRD

