

2017 Koksilah River Drought Summary

Jaro Szczot, R.P.Bio. Fish and Wildlife, Nanaimo

Discharge Approved (100% Quality Controlled)

Koksilah River

- Regionally significant stocks of anadromous salmon, steelhead and resident trout spp.
- Traditional use of fish, wildlife and water resources by members of local First Nations
- Heavy domestic and agricultural run-of-river demands in the middle and lower reaches of the watershed that lacks storage
- Rain-dominated watershed (209 sq.km) with historical low summer flows and high temperatures

Koksilah River Snorkel Survey Results 1999-2016

The problem

- Early August 2017- no appreciable rain for > 2 months, large diurnal fluctuations in flows at WSC station due to summer irrigation and industrial demands
- Flows in the lower river were 50% to 75% less than upstream of a number of agricultural/ industrial water users
- Flows were in the range of 200 300 L/s which is significantly less than a previously recommended environmental flow threshold for salmon in the mainstem Koksilah River (B.Tutty,1984) – 425L/s or 4.3% MAD
- Needed to redefine Critical Environmental Flow Thresholds to align with 2017 drought regime, current water demands and new WSA regulations

Stage Measurements
 Discharge Measurements
 Primary Water Level Provisional (subject to change)

Primary Water Level Approved (100% Quality Controlled)
Discharge Approved (100% Quality Controlled)
 Discl

- Discharge Provisional (subject to change)

Setting the CEFT value

- •CEFT volume of water flow below which significant or irreversible harm to the aquatic ecosystem of the stream is likely to occur
- •Significant impact on fish population for lower Koksilah River
- defined as potential loss of 50% of ST fry from riffles
- •Established a downstream flow monitoring station in addition to KOKSILAH RIVER AT COWICHAN STATION (08HA003)
- Picked a representative riffle in both sections
- •Measured variables such as: riffle area, velocity, depth, substrate type and temperature
- •Collected fish at each riffle at different flows to determine population density per 100 sq.m of riffle area

Why are Riffles Important in the Summer?

- Riffles are the first areas that dry up once flows decrease
- They are the main source of food at low flows (insects)
- Preferred habitat for Steelhead and RT/CT juveniles
- Pools tend to be dominated by Coho salmon fry/fingerlings
- Trout species get out competed by Coho in pools

Upstream Riffle (KRU): Fish Densities

08-Aug-17				
Electrofishing Effort (2 passess) = 369 s		Temperature @1500h	rs = 20.75 deg C	
Voltage = 600 V				
Frequency = 60 Hz				
Duty Cycle = 12%				
Species	Number of fish	Average Length (mm)	Density (per 100 sq meters of riffle a	rea)
Steelhad	105	64	154.8672566	
Coastrange Sculpin	40	80	58.99705015	
Coho Salmon	3	60	4.424778761	
Lampetra sp.	1	115	1.474926254	
TOTAL	149		219.7640118	
05-Sep-17				
Electrofishing Effort (2 pass	sess) = 690s	Temperature @1530h	rs = 18.2 deg C	
Voltage = 600 V				
Frequency = 60 Hz				
Duty Cycle = 12%				
Species	Number of fish	Average Length (mm)	Density (per 100 sq meters of riffle a	rea)
Steelhad	29	65	29.74358974	
Coastrange Sculpin	29	74	29.74358974	
Coho Salmon	4	57	4.102564103	
Lampetra sp.	1	149	1.025641026	
TOTAL	63		92.92035398	

•This occurred only at KRU at a density of 75 fish/100 sq m corresponding to a discharge of 210 L/s

KRUKRD

The result – the voluntary reductions worked!

Stage Measurements

Discharge Measurements

Primary Water Level Approved (100% Quality Controlled)

ge Provisional (subject to change)

The result – the voluntary reductions worked!

Lessons Learned

- Issues with WSC station and reliability of historical data
- Personnel and resource intense (monitoring/ interviews)
- •Earlier identification of problem = more effective voluntary conservation efforts
- •Focus on water conservation measures for domestic, agricultural and industrial users in Koksilah Valley

Project Contributors

Andrew Boxwell Barb Sorensen Ben Robinson **Brendan Anderson** Brian Epps Cali Melnechenko **Christine Petrovcic Cowichan Tribes** Darryl Slater David Johnson David Robinson **David Skarbo Faye Hirshfield Greg Gage** Heather Johnstone John Baldwin Jordan Rosenfeld Larry Barr Lisa Bhopalsingh Mark Desprez Matt MacDonald Mike McCulloch Neil Goeller Pat Lapcevic **Rick Merriman Ron Ptolemy** Selina Andres Sylvia Barroso **Tyler Schon** Jaro Szczot

Questions???