
MOE Water Quality Monitoring Network: Projects in the Cowichan Watershed

May 5, 2011 Deborah Epps and John Deniseger Environment Protection Division MOE, Nanaimo

Guiding Principles

- Embracing shared stewardship through partnerships – far more effective
- Ecoregion approach understanding fundamental water quality across multiple watersheds – Water quality objectives

Making the Connections

- Cumulative effects of multiple land uses on streams, lakes, marine embayed areas
- Point sources and Non Point Sources
- Path forward linking land use to water quality

Outline

Background

- Water Quality objectives
- Ecoregion Approach
- Cowichan Lake new wqo's
- Cowichan River attainment monitoring
- Cowichan Bay develop wqo's
- Other areas of interest

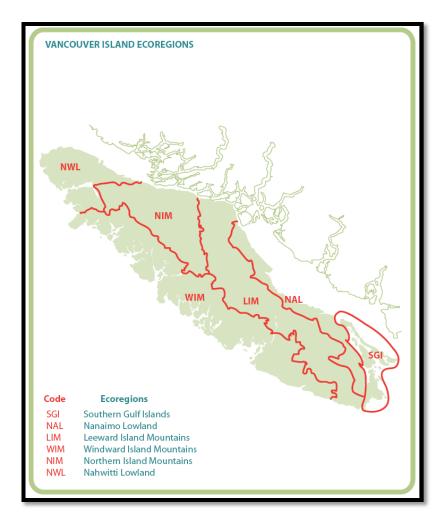
What are water quality objectives?

- Provincial water quality guidelines
- Watershed/Site specific water quality objectives
- 3 years of monitoring and assessment
 Grab samples, continuous and biological
- Write up with input from partners
 - Partnership approach integrates consultation throughout rather than as final step

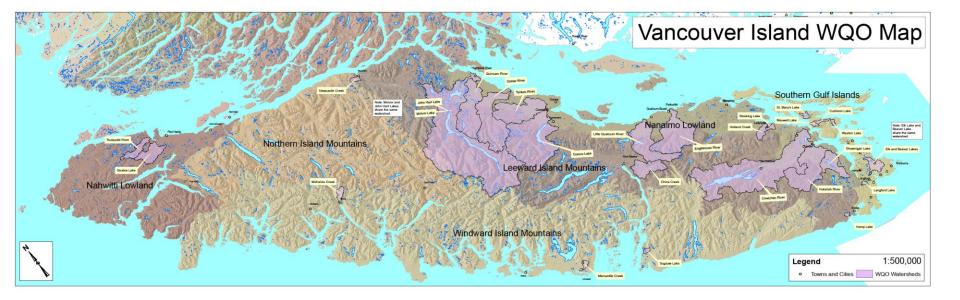
How do we get this done?

- Partnerships established within each watershed
- Partners do bulk the sampling
- We train, provide supplies, do QA/QC and safety audits
- Cost sharing
- Data sharing

Deliverables – Now and for the Future


- Establish present state of water quality in the watershed
- Establish a baseline for long term trends and planning processes
- Establish water quality objectives for the watershed focusing on all users of the resource
- Objectives which make sense for that water body – help guide management decisions

Objectives - now what?


- If objectives are met following up attainment monitoring every 3 – 5 years
- If objectives are not met follow up to determine why they are not being met
- Provincial reporting of objectives attainment monitoring results – significant public and media scrutiny – also reported out on the web

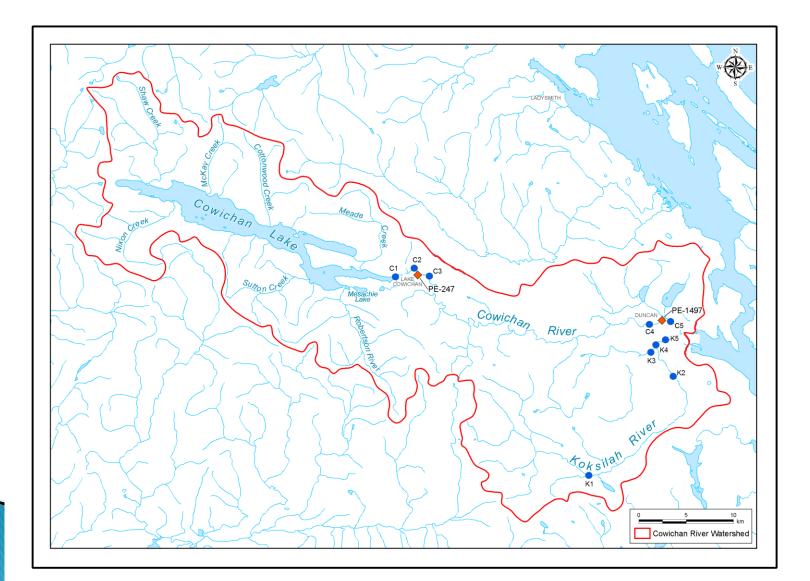
Ecoregion Approach

- Developed in 2002
- 6 ecoregions on Vancouver Island
- Fundamental baseline water quality similar in all watersheds within each ecoregion
- 1 representative watershed chosen for each ecoregion

Currently have at least one lake or stream WQO report completed for each ecoregion (in some ecoregions more than one)

Cowichan River

- Watershed:
 - Primarily private land



- NPS –forestry, agriculture, urbanization, rural residential, recreation
- STP discharges
- Uses: domestic, aquatic life, recreation, wildlife, irrigation
- WQOs developed in 1989

Cowichan River sites

Attainment monitoring

- Cowichan/Koksilah 2002, 2003 and 2008
- Summer and fall (5 weekly samples in 30 days)
- Biomonitoring 2010 in partnership with CVRD
- Attainment report and updated objectives
 - Fecals, e. coli, TSS, turbidity, DO
 - Nutrients P and chlorophyll a
 - Update objectives- using ecoregion concept (i.e. applying Englishman River background sites)

Updated WQOs - Cowichan and Koksilah Rivers

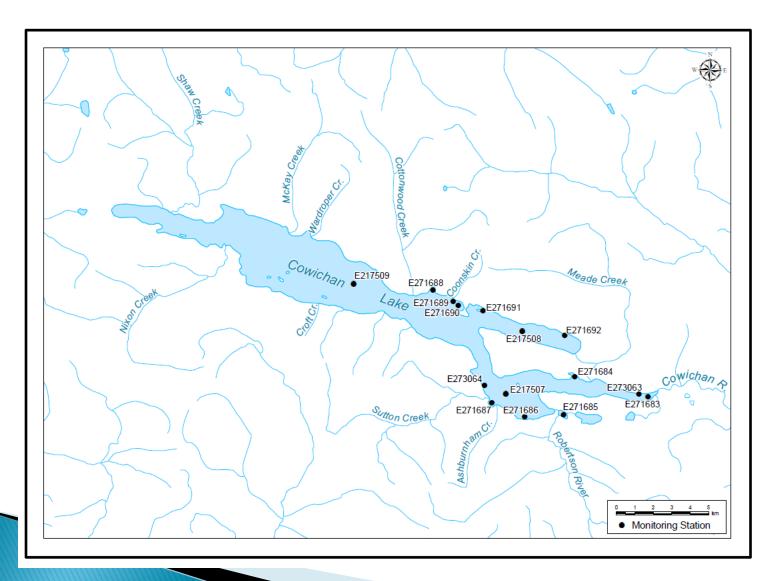
Variable	Objective Value	
Escherichia coli	≤ 10 CFU/100mL (90 th percentile) (Cowichan River upstream of hwy bridge,	
	Koksilah River)	
	≤ 77 CFU/100mL (geometric mean) (Cowichan River downstream of hwy bridge)	
Dissolved Oxygen	≥ 11.2 mg/L (Oct to May)	
	\geq 8 mg/L (June to Sept)	
Non-filterable Residue	Oct to Dec:	
(Total Suspended Solids)	\leq 33 mg/L (maximum)	
	\leq 13 mg/L (mean based on 5 weekly samples in 30 day period)	
	Jan to Sept:	
	$\leq 26 \text{ mg/L} (\text{maximum})$	
	\leq 6 mg/L (mean based on 5 weekly samples in 30 day period)	
Turbidity	Oct to Dec:	
	\leq 5 NTU (maximum)	
	Jan to Sept	
	≤ 2 NTU (maximum)	
Ammonia*	Summer:	
	\leq 0.49 mg/L (mean based on 5 weekly samples in 30 day period)	
	\leq 3.61 mg/L (maximum)	
	Fall:	
	\leq 1.31 mg/L (mean based on 5 weekly samples in 30 day period)	
	$\leq 6.83 \text{ mg/L} (\text{maximum})$	
Chlorophyll-a	\leq 5.0 µg/m ² (applies to downstream of PE-247 and PE-1497)	
Total Copper*	\leq 0.002 mg/L (mean based on 5 weekly samples in 30 day period)	
	$\leq 0.004 \text{ mg/L} (\text{maximum})$	
Total Lead*	\leq 0.004 mg/L (mean based on 5 weekly samples in 30 day period)	
	$\leq 0.011 \text{ mg/L} (\text{maximum})$	
Total Zinc*	≤ 0.0075 mg/L (mean based on 5 weekly samples in 30 day period)	
	\leq 0.033 mg/L (maximum)	
Temperature	≤ 17 °C (mean weekly temperature)	

Koksilah River

- Continually exceed WQOs
 - DO, non-filterable residue, turbidity
 - Fecal coliforms, E. Coli
- Identify and address sources
 - Bacterial source tracking
 - Land use activities
 - Timber harvesting, agriculture

Trend Monitoring

- Federal/Provincial trend monitoring program
- Cowichan approx 1km downstream the JUB discharge
- Samples collected biweekly
- Provincial report annually



Cowichan Lake

- WQO's report 2011
 - Monitoring took place in 2008 and 2010
- Stewardship group and Living Rivers
- Quarterly lake sampling at three sites
- Bacteriological around lake 2009 and 2010
- TSS inputs fall stream sampling 2009
- BCLSS biweekly sampling from April –Oct
 - Temperature and secchi disk

Cowichan Lake-sample sites

Proposed WQO's for Cowichan Lake

Variable	Objective Value
Water temperature	\leq 15°C summer maximum hypolimnetic
	temperature (> 10m depth)
Dissolved oxygen	\geq 5 mg/L at any depth throughout the year
Secchi Depth	\geq 6.0 m minimum, \geq 8.0 m average
Turbidity – lake sites	≤ 2 NTU maximum
Turbidity - tributaries	Max of 5 NTU; average of 2 NTU with a minimum
	5 weekly samples collected over a 30-day period
TSS - tributaries	Max 25 mg/L; average of 5 mg/L with a minimum
	5 weekly samples collected over a 30-day period
Total organic carbon	\leq 4 mg/L maximum
<i>E. coli</i> bacteria	$\leq 10 \text{ CFU}/100 \text{ mL} (90^{\text{th}} \text{ percentile}) \text{ with a minimum}$
	5 weekly samples collected over a 30-day period
Chlorophyll a	$\leq 2 \ \mu g/L$

Cowichan Bay - 2000 MOE report

- Cowichan River
 - fecals, nutrients, TSS
- Cowichan Bay
 - Very high fecals throughout the Bay
 - Hot spots associated with STPs
 - Oil/grease and some metals associated with terminal sites (Westcan and Doman)
- Storm water drains
 - High fecals, TSS

Follow up

- > 2000 to 2005
 - 2000 Doman/Westcan installed oil/water separators
 - 2003 JUB STP upgrade and alum addition
 - 2004 Closure of Cowichan Bay STP
- Benefits to Environment
 - >80% reduction in phosphorus from JUB discharge through alum addition
 - Reduced fecal coliforms

Additional Sampling 2004/05

Cowichan Bay

- Major hot spot addressed
- Highlighted Lambourn
- Fecals improved but remain significantly elevated
- Event driven winter storms

Storm Water

- Still really high fecal numbers
- Event driven winter storms

MORE Recent developments

- 2006 Remediation of Stoltz Bluffs/clay bank in Cowichan River
 - Living Rivers monitoring 2010/11
- 2010/11 Lambourn STP upgrade treatment and outfall extension
- > 2011 begin development of WQO's?
 - Partnership with Cowichan Water Board, First Nations, CVRD, local stewardship groups
 - Focus on bacteriological indicators, shellfish and human health
 - Use Turbidity as a surrogate set watershed targets

Quamichan and Somenos Lakes

- Local stewardship groups
- Hosted BCLSS 2010 forum in June
- Quamichan
 - Watershed management plan- 2009
- Somenos
 - Stormwater sampling fall 2009/10

WHY? Cultural, Environmental and Economic

- Restore, maintain, protect the Cowichan ecosystem
- Part of region's cultural and environmental identity
- FN importance cultural, salmon, shellfish
- Re-open shellfish harvesting opportunities
- Recreation, tourism

How can WQO's be used?

- Policy and bylaw development
 - Integration of land use and development within OCP
 - Link to WQO's and biomonitoring
 - Use TSS as surrogate
 - Bylaws tailored for Cowichan area targeting TSS

Proactive approach to rainwater management

- Regional Liquid Waste Management Planning (LWMP) for wastewater and rainwater together
- Include site specific water quality objectives in LWMP
- Ultimately linking: water quality of marine waters to streams and land use, rainwater management, bylaws/zoning, shellfish

Questions?

